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Abstract

Deep learning often adopts data augmentation as an essential and efficient tech-
nique to generate new training examples from existing data to improve the model
robustness and generalization. Differential privacy is a technique used to preserve
the privacy of individual data points while releasing statistical information about
a dataset. In this work, we study the relationship between data augmentation
and differential privacy in deep learning for image and text classification. We
found that although data augmentation has a negative effect on the performance of
models trained with differential privacy, it improves the model robustness against
membership inference attacks 1.

1 Introduction

The data privacy of machine learning models refers to the security of its training data against external
attacks [De Cristofaro, 2021, Strobel and Shokri, 2022]. Differential privacy (DP) [Dwork and Roth,
2013] has emerged as the leading privacy-preserving technique which provides a rigorous framework
for releasing statistical information without revealing the identities of individual data points. This is
achieved by introducing random noise to the data at each stage of query release. The wide-ranging
applicability of DP has fueled its prompt adoption in machine learning systems [Munilla Garrido
et al., 2023], thanks to the call for privacy-enhancing technologies to make models trained on sensitive
personal or protected information less prone to adversarial attacks. The merging of deep learning
with DP is currently under various ongoing investigations [Mireshghallah et al., 2020].

In training deep learning (DL) models, data augmentation (DA) [Shorten and Khoshgoftaar, 2019] is
often used to boost the training data size and diversity, improve model robustness and generalizability,
and preventing overfitting. However, its compatibility with DP is not yet known. We conjecture that
DA may have a negative effect on the privacy of a private DL model. To the best of our knowledge,
no existing work has quantitatively explored the trade-offs between privacy in DL models and model
training with DA. Intuitively, the inclusion of DA requires splitting the privacy budget over the
transformed data, therefore should make the models less private. We seek to investigate the trade-off
between them, by comparing accuracy metrics of DP models with and without DA and probing the
model privacy through membership inference attacks (MIAs) [Shokri et al., 2017], which measure
the risk of revealing training data. Our main contributions are,

1The code we used to train and evaluate our models is available at https://github.com/davidguzmanr/
CSC2516. All authors conducted background research. E. D. Guzman Ramirez programmed the model for
image classification, J. A. Morales Vidales programmed the model for text classification, R. Xian analyzed the
membership inference attacks, led the report writing with contributions from the others.

https://github.com/davidguzmanr/CSC2516
https://github.com/davidguzmanr/CSC2516


1. Applying DA improves the data privacy in trained neural network models.
2. Adding DA to differentially private neural networks decrease performance of the models.

2 Related works

DA in security and privacy Previous research have explored the idea of applying differential privacy
to the deep learning framework. [Abadi et al., 2016] introduce a differntially private stochastic
gradient descent (SGD) algorithm with minimal lost in model performance. It has recently been
shown in [Tramèr and Boneh, 2020] that DL models suffer a significant loss of prediction accuracy
when trained in a differentially private manner. [Sablayrolles et al., 2019] empirically observed that
better generalization leads to worse inference success rate. The work of [Yu et al., 2020] explored the
relationship between DA and traditional privacy-preserving mechanism. Their approach achieved a
70.1% success rate of MIAs, suggesting that there’s still considerable room for improvement.

Data duplicates and privacy Data duplicates can be thought of as uncontrolled augmentation which
exacerbate the class imbalance among training datasets and dominates the gradient during training.
Their existence often hurts model performance as well as privacy due to the memorization behvaior
of DL models. Recent work using deduplicated datasets to train language models show improved
performance and less privacy leakage [Kandpal et al., 2022].

3 Preliminaries and background

Privacy risks in DL The characteristics of DL models make them vulnerable to privacy attacks
[Mireshghallah et al., 2020]. A primary source of privacy risk is memorization. In language models,
this leads to the emission of precise information verbatim, which poses severe privacy risks for
personal or sensitive information [Song et al., 2017]. Another important aspect is overfitting, which
creates a generalization gap can be exploited by adversaries in privacy attacks. Moreover, the privacy
risk is also dependent on the model type and the diversity in the training data, etc [Hu et al., 2022].

Quantification of the privacy risk of DL models often uses the accuracy (i.e. success rate) of privacy
attacks. The major types of privacy attacks on DL models include membership inference, attribute
inference, and model inversion, in an increasing order of severity. Membership inference yields a
binary outcome indicating whether a given instance of data is in the training set of the DL model
[Shokri et al., 2017]. Attribute inference recovers certain attributes of the training data. Model
inversion seeks to reconstruct entire training data from model parameters [Haim et al., 2022].

The baseline MIA [Yeom et al., 2018] (also called gap attack) uses all data from the combination of
training and testing datasets. The black-box DL model is asked to answer a binary question whether
the data shown is from training (1) or test (0) set. The accuracy (acc) of this baseline attack relates to
the accuracy gap between training and testing and is defined as accMIA = [1+(acctrain−acctest)]/2.
The accMIA is 1 when the training and testing accuracy is 1 (i.e. complete memorization), and 1/2
(i.e. random guessing) when the training and testing accuracies are indistinguishable.

Differential Privacy A randomized algorithm A is (ε, δ)-differentially private if for any E in the
range of A, and any two datasets X , X ′ that differ in only one element (i.e neighbouring datasets),

P[A(X) ∈ E] ≤ eεP[A(X ′) ∈ E] + δ. (1)

The privacy parameter ε controls the trade-off between privacy leakage and accuracy of the algorithm.
This requirement is guaranteed by tuning the random component in the algorithm A. The common
ways are to introduce additive noise with distributional constraints [Dwork and Roth, 2013].

Differentially Private SGD (DP-SGD) The SGD algorithm [Bottou, 2010] is the primary workhorse
in training DL models. For this work we used the (ε, δ)-DP SGD algorithm [Abadi et al.,
2016], where the DP is guaranteed by the addition of Gaussian noise N (0, σ2C2I) and gradi-
ent clipping (C as the gradient norm bound) to each optimization step. The hyperparameter
σ = Ω(B/N

√
T log(1/δ) log(T/δ)/ϵ) depends on the batch size (B), the sample size (N ), and the

number of training epochs (T ). The gradient update rule, with learning rate η, for DP-SGD is,

θt+1 = θt −
η

|B|

(∑
i∈B

clipC(∇θt
L(θt,xi)) +N (0, σ2C2I)

)
. (2)
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4 Experimental results

Our experiments involve training image and text classification models using existing deep neural
network architectures with and without data augmentation and the evaluation of their privacy using
membership inference attacks. We used PyTorch-based Opacus package [Yousefpour et al., 2021] to
implement differentially private model training.

Image classification. For image classification, we trained a ResNet-18 [He et al., 2016] using
differentially private-SGD [Abadi et al., 2016] with the CIFAR-10 dataset (containing 50,000 training
images and 10,000 test images) and compared the scenarios with or without data augmentation.
In total, we used three sets of privacy parameters with (ε, δ) being (10, 10−5), (30, 10−5), and
(50, 10−5), respectively. The data augmentation was conducted using a Bernoulli draw with a
probability of 0.5 for undergoing transformation, which include random cropping, and random
horizontal flipping. These two types of DA transformation were chosen because of their better
performance compared with others. In model training, we experimented with a weight decay of 10−3

and a multiplicative learning-rate scheduler to improve the model generalization. For each trained
model, the optimization uses a minibatch size of 128 and was terminated after 50 epochs. In training
with DP-SGD, the gradient norm bound C was chosen as 1.2 to optimize the validation accuracy.

0 10 20 30 40 50

Epochs

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

Augmentation

False

True

Regularization

False

True

(a) ε = ∞ (no DP)
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Figure 1: Test accuracy of the ResNet-18 model for different levels of privacy on CIFAR-10.

From the results in figure 1, we see that as the amount of noise increases (i.e., reduce ε) the accuracy of
the model decreases, which is to be expected. Adding DA and weight-decay regularization improves
the performance of models trained without DP. However, for private models, adding DA or weight
decay actually hurts performance.

Text classification. We built a differentially private text classifier using BERT [Devlin et al., 2018]
trained on a movie review dataset containing 8,530 entries for training and 1,066 for testing [Pang
and Lee, 2005]. We froze most of the weights of the pre-trained model leaving us with 7,680,771
trainable parameters, which were optimized using the DP-SGD algorithm [Abadi et al., 2016]. For
DA, we used the methods by [Wei and Zou, 2019], which include random swapping word positions,
random word removal, insertion of synonyms in a random location, and replacement of a random
word by its synonym. We used the implementation of these methods in the textattack package
[Morris et al., 2020] to perform DA on a random sample selected from the training set. For each data
entry, the DA method was chosen at random from the list described previously. We trained models
with and without DA and weight-decay regularization. For models trained with differential privacy,
we used three sets of privacy parameters (ε, δ): (3, 10−4), (5, 10−4), (10, 10−4) and non-private. We
chose the Adam optimizer [Kingma and Ba, 2014] with a batch size of 32, learning rate of 5× 10−4,
weight decay of 10−2 and gradient clipping norm bound of 1.2.
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Figure 2: Test accuracy of BERT for different levels of privacy on the Movie Review Dataset.

From the results in figure 2, we can clearly see that as we increase the amount of noise (i.e., reducing
ε) the accuracy of the model decreases. As expected, the performance of non-private models
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increases when DA and regularization are applied. For private models, we find that DA hurts the test
accuracy. This is in agreement with the observations in the image classification task. However, in text
classification, the differences in accuracy are almost negligible between models with and without DA
or regularization, specially for the unregularized models with ε = 3 in figure 2b.

No weight decay With weight decay
Model No data augmentation With data augmentation No data augmentation With data augmentation
No DP 87.85 74.67 87.08 78.40
ε = 50 57.67 50.53 52.65 46.49
ε = 30 56.72 49.81 51.54 45.10
ε = 10 54.75 48.69 49.73 42.23

Table 1: Accuracy of membership inference attacks on CIFAR-10. The least robust model against
MIA for each setting is marked in red, while the most robust is marked in blue.

No weight decay With weight decay
Model No data augmentation With data augmentation No data augmentation With data augmentation
No DP 79.04 79.79 78.42 77.47
ε = 10 70.47 70.11 68.15 67.76
ε = 5 68.45 68.09 66.72 66.48
ε = 3 67.48 67.01 66.05 65.69

Table 2: Accuracy of membership inference attacks on Movie Review dataset. The least robust model
against MIA for each setting is marked in red, while the most robust is marked in blue.

Membership inference. We used the implementation of the MIAs within the Adversarial Robustness
Toolbox [Nicolae et al., 2018] to carry out the gap attack. The outcomes are shown in Tables 1-2 are
calculated using both the training and testing datasets in each classification context. Along the vertical
direction in the table, we see that for both the image and text classification tasks, models trained
with differential privacy show a marked drop in the MIA accuracy than those without (equivalent
to ε = ∞), indicating the improvement in security. The attack accuracy decreases with increasing
model privacy (i.e. decreasing ε).

Comparing the MIA accuracy across settings in the horizontal direction in Tables 1-2, we see that for
private models, the setting with no data augmentation and no regularization is the most vulnerable
to MIA (labeled in red). In general, we see consistent improvement in privacy for models trained
with DP-SGD in the order: accDA,WD

MIA < {accDA,nWD
MIA , accnDA,WD

MIA } < accnDA,nWD
MIA . Here, the

superscript indicates the experimental setting, with nWD meaning no weight decay. Because both
regularization (such as weight decay) and DA improve model generalization by reducing overfitting,
our results provide further evidence that better generalization leads to improved model privacy.

5 Conclusion

Our experiments demonstrate that while data augmentation is widely applicable to enhancing the
performance of deep learning models, it should be used with caution when combined with differential
privacy: the balancing effect between the factors leading to generalization (e.g. model accuracy
or utility) and privacy should be accounted for. Our observations motivate the development of
augmentation techniques that are more efficient at improving generalization with fewer instances
[Cubuk et al., 2020], therefore compromises less the accuracy of differentially private models.
Moreover, private training algorithms that take into account the data distribution, such as those
that can adaptively adjust the privacy parameters [Bassily et al., 2021] in order to account for data
augmentation are also a potentially promising direction in treading the balance between privacy and
utility in diverse applications.
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