

Cross-Domain Transferability of Adversarial Examples in NLP

David Guzmán Jean Charle Yaacoub

Introduction

- Existing attacks rely directly or indirectly on the source training data, which hampers their transferability to other domains.
- Previous work in CV [1] has explored the idea of the transferability of adversarial examples across domains with compelling results that demonstrated such domain invariant adversaries.
- A true **black-box** attack must be able to fool models across different target domains/tasks without ever being explicitly trained on those target domains/tasks.
- In this work we explore this idea in NLP by exploring different domain and task settings and looking at how adversarial examples transfer across them.
- To the best of our knowledge, the work closest to ours is [2], which only explores the similar domain, same task setting.

Methodology

- Pre-trained models were chosen from HuggingFace [3, 4].
- Models were selected based on architecture, domain and task, as showed in table 1.
- Domain is defined as the data distribution the model is trained on.
- Settings start from the **similar domain**, **same task** setting of [2] and end with the extreme case of **different domain**, **different task**.
- We test using a variety of different attack using the TextAttack framework [3], which offers a variety of algorithms to craft adversarial examples in NLP.
- We used samples from the target domain to give the target model the best chance at defending against the attack. So if it fails here it is also likely to fail when we sample from the attack distribution.

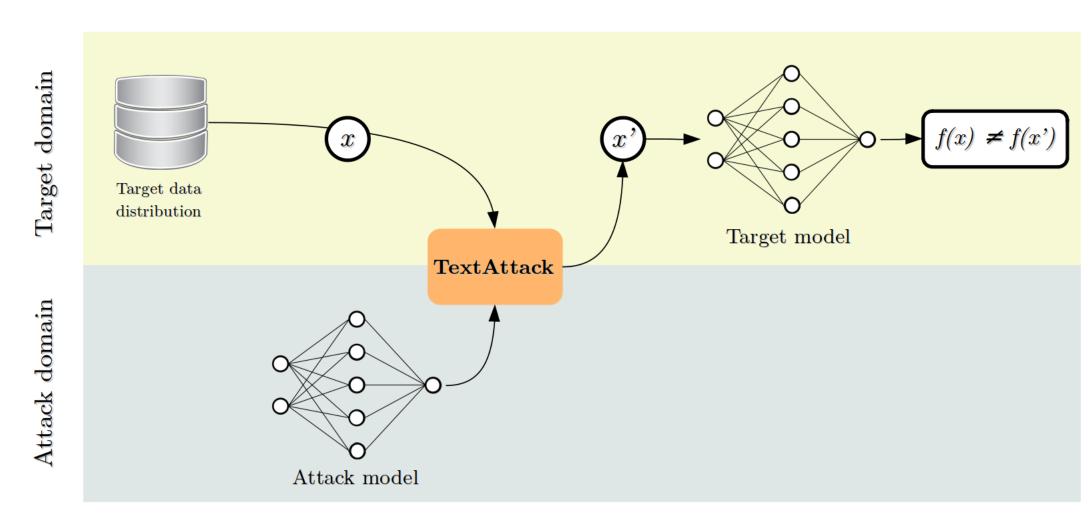


Figure 1. Illustration of the attack pipeline

Test Procedure

- 1. Sample inputs from the target's data distribution (test set).
- 2. Using TextAttack, generate adversarial examples that successfully fool the attack model.
- 3. Finally, calculate the accuracy of the target model on those generated examples.

Results

Setting	Attack Model	Target Model
Similar domain, same task	roberta-base-imdb	roberta-base-rotten-tomatoes
Similar domain, different task	twitter-roberta-base-irony	twitter-roberta-base-sentiment
Different domain, same task	twitter-roberta-base-sentiment	roberta-base-rotten-tomatoes
Different domain, different task	twitter-roberta-base-irony	roberta-base-rotten-tomatoes

Table 1. Summary of settings and models used

Setting	Original accuracy	Attack	Relative decrease in accuracy
Similar domain, same task	88.30	BAEGarg2019 DeepWordBugGao2018 TextFoolerJin2019	29.56 30.80 24.01
Different domain, same task	88.30	BAEGarg2019 DeepWordBugGao2018 TextFoolerJin2019	17.44 12.34 9.74
Different domain, different task	88.30	BAEGarg2019 DeepWordBugGao2018 TextFoolerJin2019	6.91 8.61 6.91
Similar domain, different task	70.50	BAEGarg2019 DeepWordBugGao2018 TextFoolerJin2019	7.52 4.82 5.39

Table 2. Target model accuracies in each setting (ordered by transferability, largest accuracy decrease first). Bold one is the biggest decrease of the three attacks.

Setting	Original accuracy	Attack	Relative decrease in accuracy
Similar domain, same task	95.00	BAEGarg2019 DeepWordBugGao2018 TextFoolerJin2019	14.42 13.79 7.05
Different domain, same task	70.50	BAEGarg2019 DeepWordBugGao2018 TextFoolerJin2019	11.57 10.63 7.32
Different domain, different task	84.69	BAEGarg2019 DeepWordBugGao2018 TextFoolerJin2019	4.52 7.53 5.88
Similar domain, different task	73.46	BAEGarg2019 DeepWordBugGao2018 TextFoolerJin2019	6.07 2.60 2.25

Table 3. Target model accuracies for **reversed settings** where the target model is treated as the attack model and vice versa for the attack model.

Original sentence Positive (76.92)	The closest thing to the experience of space travel
BAEGarg2019 Negative (89.04)	The closest thing to the notion of space travel
DeepWordBugGao2018 Negative (87.37)	The cloest thing to the sexperience of spacD Uravel
TextFoolerJin2019 Negative (96.45)	The nearest thing to the expertise of space travel

Table 4. Examples of some of the attacks.

Key Observations

- The further we are from the target model in terms of domain and task the less transferable the attack is (target model accuracy degradation isn't as large).
- Adversarial examples are more transferable across different domains than across different tasks, as indicated by a greater decrease in the **similar domain**, **different task** setting vs the **different domain**, **same task** setting.

Conclusion

- For a **successful** adversary they must at least be aware of the domain or task, but attacks can be transferred even without this information.
- Having the same task is more important than having the same domain. We suspect this is due to how altering the task changes the behaviour of the last few layers of a model whereas altering the domain changes the first layers.
- The results give a clue to understand where adversarial examples in NLP come from. The high transferability in the **same task** settings indicate that they rely on higher-level features which suggests that adversarial examples in NLP are primarily concerned with the activations of the last layers.
- Further research is needed to understand exactly what about these last layers allows for their transferability.

References

- [1] M. Naseer, S. H. Khan, H. Khan, F. S. Khan, and F. Porikli, "Cross-domain transferability of adversarial perturbations," 2019.
- [2] S. Datta, "Learn2weight: Parameter adaptation against similar-domain adversarial attacks," 2022.
- [3] J. X. Morris, E. Lifland, J. Y. Yoo, J. Grigsby, D. Jin, and Y. Qi, "Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp," 2020.
- [4] F. Barbieri, J. Camacho-Collados, L. Neves, and L. Espinosa-Anke, "Tweeteval: Unified benchmark and comparative evaluation for tweet classification," 2020.
- [5] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry, "Adversarial examples are not bugs, they are features," 2019.